12 research outputs found

    Cooperative Resource Management in a IaaS

    Get PDF
    International audienceVirtualized IaaS generally rely on a server consolidation system to pack virtual machines (VMs) on as few servers as possible, for energy saving. However, two situations are not taken into account, and could enhance consolidation. First, since the managed VMs can be of various sizes (small, medium, large, etc.), VMs packing can be obstructed when sizes don't fit available spaces on servers. Therefore, we would need to "split" such VMs. Second, two VMs which host replicas of the same application server (for scalability) could be "fusion Ned" when they are located on the same physical server, in order to reduce virtualization overhead and VMs memory footprint. Split and fusion operations lead to the management of elastic VMs and requires cooperation between the application level and the provider level, as they impact management at both levels. In this paper, we propose a IaaS resource management system which implements elastic VMs based on split/fusion operations and cooperative management. We show its benefit with a set of experiments

    Energy-QoS Tradeoffs in J2EE Hosting Centers

    Get PDF
    International audienceNowadays, hosting centres are widely used to host various kinds of applications e.g., web servers or scientific applications. Resource management is a major challenge for most organisations that run these infrastructures. Many studies show that clusters are not used at their full capacity which represents a significant source of waste. Autonomic management systems have been introduced in order to dynamically adapt software infrastructures according to runtime conditions. They provide support to deploy, configure, monitor, and repair applications in such environments. In this paper, we report our experiments in using an autonomic management system to provide resource aware management for a clustered application. We consider a standard replicated server infrastructure in which we dynamically adapt the degree of replication in order to ensure a given QoS while minimising energy consumption

    Self-Protected System: an experiment

    No full text
    The complexity of today's distributed computing environment is such that the presence of bugs and security holes is statistically unavoidable. A very promising approach to this issue is to implement a self-protected system, similarly to a natural immune system which has the ability to detect the intrusion of foreign elements within the system. We designed and implemented an autonomic system called Jade, which relies on software component architectures to reconfigure applications according to observed events. The knowledge of the application architecture can be used to detect foreign activities and to trigger counter-measures. We described how this approach can be applied the provide self-protection for a clustered J2EE application

    When eXtended Para-Virtualization (XPV) meets NUMA

    Get PDF
    International audienceThis paper addresses the problem of efficiently virtualizing NUMA architectures. The major challenge comes from the fact that the hypervisor regularly reconfigures the placement of a virtual machine (VM) over the NUMA topology. However, neither guest operating systems (OSes) nor system runtime libraries (e.g., Hotspot) are designed to consider NUMA topology changes at runtime, leading end user applications to unpredictable performance. This paper presents eXtended Para-Virtualization (XPV), a new principle to efficiently virtualize a NUMA architecture. XPV consists in revisiting the interface between the hypervisor and the guest OS, and between the guest OS and system runtime libraries (SRL) so that they can dynamically take into account NUMA topology changes. The paper presents a methodology for systematically adapting legacy hypervisors, OSes, and SRLs. We have applied our approach with less than 2k line of codes in two legacy hypervisors (Xen and KVM), two legacy guest OSes (Linux and FreeBSD), and three legacy SRLs (Hotspot, TCMalloc, and jemalloc). The evaluation results showed that XPV outperforms all existing solutions by up to 304%

    Editor's Choice - Management of Chronic Venous Disease: Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS)

    Get PDF

    Editor's Choice – Management of Chronic Venous Disease

    No full text
    corecore